
PURDUE UNIVERSITY

DEPARTMENT OF STATISTICS

DIVISION OF MATHEMATICAL SCIENCES

81 09 105



NONPARAMETRICPROCEDURES IN LTIPLE DECISIONS
(RANKING AND §ELECTI N PROCEDbRES).

by

/J Shanti S./Gupta (. C. /b .,

and

G.yV C. McDonald
General Motd'rs Research Laboratories

J

_ . -I !I
' 2'

Department of Statistics
Division of Mathematical Sciences

Mimeograph Series #80-13-,

May 80

*The writing of this paper was supported in part by the Office of Naval Research
Contract N00014-75-C-0455 at Purdue University.

S._- ..... ,7, 7/J



NONPARAMETRIC PROCEDURES IN MULTIPLE DECISIONS*
(RANKING AND SELECTION PROCEDURES)
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ABSTRACT

- This article surveys statistical techniques which are nonparametric

in nature and used in formal ranking and selection of populations. Such

methods have been developed only within the last fifteen years and are

usually based on rank scores and/or robust estimators (such as the Hodges-

Lehmann estimator). The procedures surveyed are applicable to one-way

classifications, two-way classifications, and paired-comparison models.

Computational methods, useful inequalities, and appropriate numerical tables

required to implement these techniques are identified and discussed.

Asymptotic relative efficiencies of the nonparametric methods, compared to

their parametric counterparts, are presented. Specific applications of

these methods (such as traffic fatality rates) are mentioned and areas

for further theoretical and computational research are identified.

1. Introduction to Selection and Rankin Procedure-s

A common problem faced by an experimenter is one of comparing several

categories or populations. These may be, for example, different varieties of

*The writing of this paper was supported in part by the Office of Naval

Research Contract N00014-75-C-0455 at Purdue University.
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a grain, different competing manufacturing processes for an industrial product,

or different drugs (treatments) for a specific disease. In other words, we

have k(> 2) populations and each population is characterized by the value

of a parameter of interest 0, which may be, in the example of drugs, an

appropriate measure of the effectiveness of a drug. The classical approach to

this problem is to test the homogeneity (null) hypothesis HO: 0 "

where al .... lek are the values of the parameter for these populations. In

the case of normal populations with means 6, .... 0 k and a common variance o ,

the test can be carried out using the F-ratio of the analysis of variance.

The above classical approach is inadequate and does not answer a

frequently encountered experimenter's question, namely, how to identify the

best category? In fact, the method of least significant differences based

on t-tests has been used in the past to detect differences between the average

yields of different varieties and thereby choose the 'best' variety. But this

method (and others related to it) is indirect and does not easily provide

an overall probability of a correct selection. Also the multiple comparison

techniques developed largely by Tukey and Scheff6 arose from the desire to draw

inference about the populations when the homogeneity hypothesis is rejected.

Selection and Ranking Procedures

The formulation of a k-sample problem as a multiple decision problem

enables the experimenter to answer questions regarding the best

category. The formulation of multiple decision procedures in the framework

of selection and ranking procedures has been accomplished generally using

either the indifference zone approach or the (random sized) subset selection

approach. The former approach was introduced.by Bechhofer (1954). Substantial
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contribution to the early and subsequent developments in the subset selection

theory has been made by Gupta starting from his work in 1956. For more

details about the numerous contributions and the related bibliography,

reference should be made to a recently published book by Gupta and Panchapakesan

(1979). This munograph discusses both approaches.

A Brief Description of the Two Approaches

Bechhofer (1954) considered the problem of ranking k normal means. In

order to explain the basic formulation, consider the problem of selecting

the population with the largest mean from k normal populations with unknown

means Pi. i 1,... k, and a common known variance 3 Let yi

denote the means of independent samples of size n from these populations.

The 'natural' procedure (which can be shown to have optimum properties) will

be to select the population that yields the largest xi. The experimenter

would, of course, need a guarantee that this procedure will pick the population

with the largest oi with a probability not less than a specified level P*, For

the problem to be meaningful P* lies between 1/k and 1. Since we do not know

the true configuration of the pi, we look for the least favorable configuration

(LFC) for which the probability of a correct selection,P(CS),will be at least

P*. Since the LFC is given by jl .'"= 11k' the probability guarantee cannot

be met whatever be the sample size n.

A natural modification is to insist on the minimum probability guarantee

whenever the best population is sufficiently superior to the next best. In

other words, the experimenter specifies a positive constant A* and requires

that the P(CS) is at least P* whenever Ak[k-l] A*, where 'Tl] ' [k]

denote the ordered means. Now the minimization of P(CS) is over the part :.., of

the parameter space in which ;'[k] - [k-i] ,A** The complement of is
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called the indifference zone for the obvious reason. The LFC in is

given by u[l] = '= u[k-l] = P[k] - ,*. The problem then reduces to determing the

minimum sample size required in order to have P(CS) > P* for the LFC.

Bechhofer's formulation can be generalized from that described above.

His general ranking problem includes, for example, selection of the t best

populations.

In the subset selection approach, the goal is to select a non-empty

subset of the populations so as to include the best population. Here the

size of the selected subset is random and is determined by the observations

themselves. In the case of normal populations with unknown means Pl .'"k'

and a common variance a 2, the rule proposed by Gupta (1956) selects the

population that yields i if and only if > max x. do , where d = d(k,P*) > 0

l<j<k J -

is determined so that the P(CS) is at least P*. Here a correct selection is selec-

tion of any subset that includes the population with the largest Wi. Thus, the

LFC is with regard to the whole parameter space 2. Under this formulation, for

given k and P* we determine d. The rule explicitly involves n. In general,

the rule will involve a constant which depends on k, P*, and n.

The performance of a subset selection procedure is studied by evaluating the

expected subset size and its supremum over the parameter space Q.

Nonparametric Techniques in Multiple Decision Theory

In the present paper, we describe selection and ranking (ordering)

procedures which are nonparametric or distribution-free. Such procedures

have the desirable property that their applicability is valid under relatively

mild assumptions regarding the underlying population(s) from which the data

are obtained. Although the importance of nonparametric methods as a
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significant branch of modern statistics is recognized by statisticians,

modern nonparametric techniques are usually restricted to hypothesis testing,

point estimators, confidence intervals, and multiple comparison procedures.

Other recent advances in nonparametric tests can be found in Hollander and

Wolfe (1973) and Lehmann (1975). The development of nonparametric methods

for multiple decision procedures is important in statistical research. The

present paper deals with selection procedures with special emphasis on the

subset selection approach related to the largest unknown parameter.

Analogous procedures (with proper modifications) are available for the

selection in terms of the smallest parameter.

In Section 2, we discuss procedures based on the ranks in the

combined sample. Section 3 deals with bounds on the probability of a

correct selection associated with the first two procedures R (G) and

R2(G) of Section 2. In Section 3, the exact and asymptotic distribution

of the (appropriate) statistic based on rank sums is discussed. In

Section 5, we provide comparisons between R, and R3 and certain parametric

procedures in terms of their asymptotic relative efficiencies. Selection

procedures based on pairwise ranks are discussed briefly in Section 6.

Section 7 deals with selection procedures based on vector ranks. In

Section 8, procedures based on Hodges-Lehmann estimators are discussed.

I
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2. Procedures Based on Combined Ranks.

Let l..... irk be k(> 2) independent populations. The associated random

variables Xi3 , j = l,...,n i, i = 1,..., k, are assumed independent and to have

a continuous distribution Fe(x), where ei belong to some interval 0 on the

real line. Suppose F (x) is a stochastically increasing (SI) family of

distributions, i.e. if eI is less than 82, then Fe (x) and F0 2(x) are distinct

and F 2(x) < F (x) for all x. Examples of such families of distributions are:

(1) any location parameter family, i.e. F (x) = F(x-a); (2) any scale parameter

family, i.e. F (x) = F(x/e), x > 0, e > 0; (3) any family of distribution

functions whose densities possess the monotone likelihood ratio (or TP2)

property. Let Rij denote the rank of the observation xi i n the combined

sample; i.e. if there are exactly r observations less than x. then R. = r+l.

These ranks are well-defined with probability one, since the random variables

are assumed to have a continous distribution. Let Z(1) < Z(2) <..., Z(N) denote
k

an ordered sample of size N =  ni from any continuous distribution G, suchi =1

that

- < a(r) Z E[Z(r)JG] (r = 1,..., N).

With each of the random variables Xii associate the number a(R ij) and define

ni

Hi  = n 1 a(R (i = 1...,k). (2.1)

Using the quantities Hi, Gupta and McDonald (1970) have defined procedures for

selecting a subset of the k populations. Letting qi denote the ith smallest

unknown parameter, we have

F (x) > F (x) .... F (x), vx. (2.2)8[l] - (2] -[k
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The population whose associated random variables have the distribution

F (x) will be called the best population. In case several populations possess0 [k]

the largest parameter value O k] , one of them is tagged at random and called

the best. A 'Correct Selection' (CS) is said to occur if and only if the

best population is included in the selected subset. In the usual subset

selection problem one wishes to select a subset such that the probability is

at least equal to a preassigned constant P*(I/k , P* , 1) that the selected

subset includes the best population. Mathematically, for a given selection

rule R,

inf P(CSIR) P*, (2.3)

where o= { (oi  ... k) . , 1 1,2,.. k . (2.4)

The following three classes of selection procedures, which choose a

subset of the k given populations, and which depend on the given distribution

G, have been considered:

RI(G): Select Ti iff H. max H.-d (i = 1,. ..,k, d 0), (2.5)
1 l -j -k J

R2 (G): Select iiff Hi  c-1 max H (i =  1,...,k, c 1), (2.6)

R3(G): Select i iff H D (i l ...., k, - D - ,). (2.7)

It should be noted that rules RI(G), R2 (G), and R3(G) are equivalent if k = 2.

The procedures R1(G) (and their randomized analogs) have been suggested by

Bartlett and Govindarajulu 1968) for continuous distributions differing by

a location parameter. The procedure RP.(G) will be studied in this paper only

for the case where Hi  0 for all i. The constants d and c are usually chosen

to be as small as possible, D as larcje as possible, while satisfyino the

LM
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probability requirement (2.3). The number of populations included in the

selected subset is a random variable which takes values 1 to k inclusive for

rules RI(G) and R2 (G). The subset chosen by rule R3 (G), however, could possibly

be empty. This aspect will be addressed further at the end of Section 3.

It has been shown by Gupta and McDonald that the infimum of P(CSIRi(G)),

i = 1,2,3, over Q is attained for e E k = : [k-l ] = e[k]}. This shows

that for k = 2 the infimum occurs at an equi-parameter configuration.

For k > 3 the least favorable configuration (LFC) is not given by the

equi-parameter configuration for RI(G) and R2(G) as can be seen from the counter-

examples of Rizvi and Woodworth (1970). The counterexample distribution is a

mixture of two distinct uniform random variables and is established for P*

near 1.

For the procedure R3(G) we can say more about the infimum of the probability

of a correct selection. The LFC is given by the equi-parameter configuration

and so

inf P(CSIR 3 (G)) = inf P(CSIR3 (G)),
~0

where 00 ={E: to e[k]}

These selection rules are called distribution-free (or nonparametric) if

the constants required for implementation are computed from P(CSIRi(G)) = P*

for B E Q0 In this case the probability does not depend on the common parameter

value and on the underlying distribution functions. The probability computation

is based on a random assignment of rank scores.

3. Bounds on P(CSIRi(G)), i 1,2.

Since the exact LFC for the selection rules R (G) and R2(G) is unknown for

k > 2, it is useful to have bounds for the probabilities of correct selection.

We will assume n. = n, i = 1,... ,k. First consider rule R (G). Since

k-I -1 N
(k-]) Z H(j) f max H 0 n j a(r), (3.1)

j=l -j k-l (j)l~j4-l-rN-n+1
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and

k
Y H A/n,

j=l

N

where a(r) A, it follows that
r=l

inf P(H(k) > v) _ inf P(CS R (G)) - inf P(H(N) u). (3.2)

The quantities u and v are defined by

u u(d,k,n) = [A-nd(k-l)]/nk, (3.3)

and
N

v v(d,k,n) n- a(r)-d. (3.4)
r=N-n+l

For the rule R2 (G), we qet a similar expression:

inf P(H(k) v') inf P(CSIR 2 (G)) inf P(H(k) u'), (3.5)

where

u' u'(d,k,n) n-I  A[1+c(k-l)] -1 (3.6)

and
N

v' v'(d,k,n) (nc) -  a(r). (3.7)
r=N-n+l

The important point to note from the inequalities (3.2) and (3.5) is that

the infima over , of expressions of the form P(H(k) K) are attained when

11[] ="' [k]"

For the particular case when a(r) = r, nH. T., the rank sum statistic1 1

associated with Tr Denotinq Ri(G) by R in this case, the infimum of

P(CS Ri) can be related to the Mann-Whitney statistic. If U is the Mann-

Whitney statistic associated with samples of size n and (k-l)n taken from

identically distributed populations, then

inf P(CS P,) P(U nd). (3.8)

A similar expression can b e der ivcr, for P2 . The Mann-Whitney U-statistic

has been tabulated by M i1ton (l(4 amonI others.aff



10

k
Since H (j) A/n, we see that

j~l

max H. > A/nk. (3.9)
l<j'z<k 'J

Hence, a sufficient, but not necessary, condition for the selection rule

R3(G) to select a nonempty subset is that P* be sufficiently large so that

D < A/N. (3.10)

For large n, this sufficiency condition for rule R3 (G) is satisfied if P*

For rule R i.e. when a(r) = r, the condition is D < (N+1)/2. As an example,

with k = 3, n = 5 the sufficient condition 0 < 8 is satisfied for P* > 0.523

and for such values a nonempty subset will be selected.

The evaluation of the constants D = D(k,n,P*) for the rule R3 can be

effected as follows:

P* < P(Ti > Dn) = P(U < n2(k- )-n(D- }), (3.11)

where now we consider all populations identically distributed. Hence, Dn is

the largest integer satisfying the inequality (3.10).

4. The Exact and Asymptotic Distribution of max T.-T i for Identically
l<j<k J

Distributed Populations.

In this section the random variables X i, j = 1,...,ni; i = 1,... ,k, are

assumed independent identically distributed with a continuous distribution

F(x). In this case the Hi are exchangeable random variables if ni = n, i =

l,...,k. It should be noted that in a slippage-type configuration, the constants

required to implement rules Ri(G), i = 1,2,3, are determined from the basic

probability requirement P(CSIRi(G)) - P* calculated with identically distributed

populations. In the case a(Ri ) = Rij the procedures Ri(G) reduce to the rank

sum procedures Ri , i = 1,2,3. The dist'ibution of the statistic max T.-T
1l'j.k
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both exact and asymptotic, is somewhat easier to obtain than the corresponding

distribution of the statistic max T /TI. For some results concerning the
l~j<k

latter statistic, see McDonald (1969). Our concern here will be the former

which is tantamount to considering rule RI. Corresponding to rule R3 is the

statistic T,, the distribution of which has been well-treated elsewhere in the

Mann-Whitney format.

Gupta and McDonald (1970) have tabulated the quantity P(Tl  max T.m)
l2j<3 -

for n = 2(1)5 and m = 0,1,...,2n2 (which covers the entire distribution).

Asymptotically (as n - =), they show

P[T k > max T.-m] - f [t(x+m/z)]k -l (x)dx (m > 0), (4.1)
lfj k J _,

where 4(.) and cv(.) are the cumulative distribution function and density of a

standard normal random variable, respectively, and

z = z(n,k) = n[k(nk+l)/12]1 /2  (4.2)

Integrals of the type

f [4(x+h2 1/2)] k-i (x)dx = P* (4.3)

have been considered in several publications. The h quantity appearing in this

expression has been tabulated (to 3 dp) by Gupta (1963) in Table I for

k = 2(1)51 and P* = .75, .90, .95, .975, and .99. Similar values are provided

(to 4 dp) in Table 1 of Gupta, Nagel and Panchapakesan (1973) for the same P*

and k = 2(1)11(2)51. Additional tabulation of h is provided by Milton (1963).

In Table IB of Milton's report, the h quantity is tabulated (to 6 dp) for

k = 3(1)10(5)25 and P* .3(.05).95, .975, .99, .995, .999, .9995, and .9999.

In Table II of the same publication P* values dre given (to 8 dp) for h 0(.05)5.15
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for all the previously mentioned values of k. Thus, this asymptotic value

can be obtained from a variety of sources and can be applied directly to very

large data sets - up to 51 populations and any (large) sample size.

Matching the right hand side of (4.1) with (4.3) yields an asymptotic

approximation to m = nd given by

m = hn[k(nk+l)/6]I/2, (4.4)

h being the appropriate solution to (4.3) corresponding to the given P* and

k. In the selection rule the smallest integer not less than m should be taken.

Approximations to the Constant m for Use with R1.

We saw that inf P(CSIR l) over S' = {8: e[l] =.. 0[k-1] is

attained when o ... = k. Suppose we want to evaluate d for which this

infimum is at least P*. Using the rank sum statistics, this means that we

want the smallest integer m =nd such that

P(Tk > Tk-m) P* (4.5)

where the TI are i.i.d. random variables. McDonald (1971) has discussed two

methods of approximating the solution. The first method uses the asymptotic

(n ) expression for the probability given by (4.1).

The second approximation is for large P* (near 1). Suppose Zl,... ,Zk

are N(O,l) random variables with the correlation matrix z. Let

P{Z[I] 6 = P*. (4.6)

Dudewicz (1969) has shown that, for large P* (near 1), an approximation to 6

is given by

62 -2[log(l-P*)] (4.7)
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in the sense that the ratio tends to 1 as P* - 1. Using his approximation

and the joint asymptotic normal distribution of [n2k(nk+l)/6]- 112(Tk-Ti),

i 1,... k-l, we obtain the approximation

m 2  _ [n2k (nk1]) I log(l-P*). (4.8)

One can also obtain this approximation from (4.1) by noting that

mz_ 12 C P*) as P* - I, a result of Rizvi and Woodworth (1970), and

using the well-known fact that

D-1(p*) - [-2 log(l-P*)]11 2 as P* 1. (4.9)

The two approximations have been compared by McDonald (1971) in the case of

P* = 0.99 for k 2(1)5, n = 5(5)25.

Let mI and m 2 denote the approximate values of m given by (4.4) and

(4.8), respectively. The numerical evaluations of mi and m 2 show that (a)

m2-m 6increases in n for fixed k, and decreases in k for fixed n, (b) mi /m 2

increases in k for fixed n, and is constant for fixed k over various values

of n, and (c) both approximations are conservative, i2 being more so than mi1.

For k = 2, McDonald (1971) has analytically shown that in2 -"11 is positive and

increasing in n, and that m 2/mI is independent of n.

5. Comparisons between Rand R3 andwithParametric Procedures.
Recall that for k 2 the rules Ri(G), i 1, 2, 3,

are equivalent. For the special case of rank sum statistics based on equal

sample sizes, Gupta and McDonald (1970) have studied the asymptotic efficiency

of R1 relative to the means procedure of Gupta (1956) for normal populations

and the efficiency of R2 relative to thp procedure of Gupta (1963) for gamma

populations both in the case of k 2 populations.
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Let 7r1 and 2 be independent normal populations with means e0 and

e0+e(e > 0) and common unit variance. Let R denote Gupta's means procedure.

For both R and R satisfying the P*-condition, the asymptotic efficiency of

R relative to R is ARE(R1 ,R;e) = limEon R(E)/nR (E), where nR(E) and nR (E)

are the sample sizes for which E(S)-P(CS)=E for R and Rl, respectively. It

is shown by Gupta and McDonald that

ARE(RIR;e) = 24e(e/ ) 2 (5.1)

where

B2(e) = f *2(x+e)T(x)dx-,2(e/2).

As e decreases to zero, we see that ARE(R1 ,R;e)-, 3/n = 0.9549.

Some exact calculations for the probabilities of choosing il and 2

using rank sum procedures can be made using Table C-l of Milton (1970) for

o = .2(.2)l.0, 1.5, 2.0, and 3.0. This table tabulates the distribution of the

Wilcoxon two-sample statistic under the normal shift alternative specified by

e. As an example, for k = 2, n = 6, and P* = .910177, the rank sum selection

rules take the form: select ri iff Ti > 31, i = 1,2. If the underlying

distributions are normal with means 0 and 8 = .2 with unit variances, then

by summing the appropriate rows in Table C-l we find P(T, 1  31) = P(Choosing

) .8465 and P(T2  > 31) = P(Choosing P2)  .9518.

Let R' denote Gupta's procedure for gamma populations. Let the scale

parameters of rl and 72 be a0 and o0e, o > 1. In this case

ARE(R,,R';e) = CI o+l)BIe)loge- , (5.2)

where now

B () 1-2(l+e) -1 + (2e+l) -  + e(2+e) -2e 2(l+e) 2

As e decreases to 1, we have ARE(R 2,R; e) 3/4.L2
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In another paper Gupta and McDonald (1972), have compared the procedures

R1, R2 , and R3 based on rank sum statistics with a procedure R which they

proposed for selection from gamma populations in terms of the guaranteed

life. Let Ti have the associated density function

-(x-Oi/

[Xi'(r)]-l[(x-Oi)/A -le x >i

f(x-e.i) =

0 elsewhere,

where r(- 0) and X(- 0) are known common parameters. In life-testing problems,

the parameter o is called the guaranteed life time. We can assume with no loss

of generality that = . Let Y. = X be the smallest order statistics based

on n independent observations from '." It is known that Yi is complete and

sufficient statistic for o.. The procedure R, of Gupta and McDonald for selec-
1 H

ting a subset containing tne population with the largest guaranteed life is

Rm: Select Ti iff

Y i Y" [k] -b , (5.3)

where b = b(k,n,P*) 0 is chosen to satisfy the P*-requirement. They have

shown that

inf P(CSIR H I Hk-l(+b)dH(x), (5.4)

where H(x) is the cdf of Y. when 0.

In the special case of r = 1, the exponential case, (5.4) reduces to

inf P(CS1 Rm) = k-l(l-w)-l(1-wk) (5.5)

where w = 1-e-nb. For this special case, Gupta and McDonald (1972) have tabulated

the values of b for k = 5, 10; n 2(1)25; and P* 0.75, 0.90, 0.95, 0.975, 0.99.

:4
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Consider three exponential populations with location parameters 01 = 0,

82 = 83 = e> 0. In this case, Gupta and McDonald (1972) have compared the

expected subset sizes for the procedures Rl, R2, R31 and Rm for j* = 0(0.1)1.5

and P* = 0.6, 14/15. The computations indicate that (1) R1 and R2 perform

equally well for P* = 0.6, (2) R2 and R3 perform equally well for P* = 14/15,

(3) E(SIR 2) = E(SjR 3) - E(SIR1 ) for all e, equality holding for e = 0, (4) Rm

performs better than all the distribution-free procedures for the smaller value

of P*, (5) for the larger P*, the distribution-free procedures are better than

Rm for 0 < 0.5, and (6) for larger values of e(e _> l.l)Rm is the best among

the four rules.

Ofosu (1974) has studied the procedure Rm and compares its performance

with a procedure that excludes from the selected subset those populations for

which Y is sufficiently below ?, the average of the Y. Based on a comparison

of the expected subset sizes, Ofosu concludes that R is superior to the rulesm

based on averaged Yi in almost all situations. For those rare situations where

Rm is not superior, it is only slightly inferior.

Gupta and McDonald (1970) compare the performance of selection rules R

and R3 in some Monte Carlo studies. Normal and logistic distributions with

variance unity were studied for different configurations of their means. For

k = 3 and n = 2,3,4, these configurations were taken to be (0.1,0,0), (0-2,0,0),

(0.5,0,0),(1.0,0,0), (2.0,0,0), (0.1,0.1,0), (0.2,0.2,0), (0.5, 0.5,0),

(1.0,1.0,0), (2-0,2.0,0). The number of simulations were 500 or 1000. The

logistic distribution was chosen because equally spaced scores such as ranks

yield locally most powerful tests for the location parameter of this distribution.

The constants d and D were chosen to yield approximately the same P* in the case

of identical distributions. Then the ratio of kP(CSIR) and E(SJR) was computed

for both rules R and R3. The bigger ratio for a rule indicates it to be

Ii
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better than the other. For example, for k 3, n = 2, then D = 2 and d 3

give the probability 14/15 for the identical case. Using the configuration

(0.1,0,0) for the normal means, the two ratios are 1.012 for Rl and 1.005 for

R so that Rl seems slightly better than R3. Using the configuration (0.5,0,0),

R3 was slightly better than Rl; the ratios being 1-045 for R, and 1-049 for R3.

These Monte Carlo studies showed no significant uniform superiority of

either of these procedures. However, R3 seemed to perform slightly better

than R in the cases where the two highest parameters are equal. No difference

in the performance of Rl and R3 was noticeable when the distribution changed

from logistic to normal. In all cases the frequency of correct selections for

R was higher than the theoretical value exactly calculated for the identical

distributions. Thus, there was no indication that the infimui of the probability

of a correct selection does not take place when all populations are identically

distributed as normal or logistic distributions under shift in location.

6. Selection Procedures Based on Pair wise Ranks

As noted earlier the least favorable configuration over V for the

selection rule R,(G) is not known and a counterexample exists showing that the

infimum of the probability of a correct selection does not occur when all

populations are identically distributed (Rules of the form R3(G) do not share

this difficulty). Hsu (1980) overcomes this difficulty by constructing a

rule based on pairwise rather than joint rankinq of the samples.

Let R() denote the rank of X., within X X X .,Xjn andJ njil. . . in' jl' .. n..

let R' )' R R i ) be the rank sum statistic for -. compared to ' Let

iJi), ]... n2, denote the collection of n2 ordered differences Xiu-X 1 ,I
D(J ) i~fi i h i

,) )  3 )u, v 1 n and set edian i.e ., D is the usual Hodqes-

Lehmann (1-d) estioator of . nr i 1. . lst M. k-I D , wheremed

I
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D(i ) = 0. The procedure proposed by Hsu for selection of the population withmeo

the largest ai, denoted by RR, is as follows:

RR: Select 7i iff

M. = max M. or max R < rn(P*), (6.1)
l jjk jin

where r n(P*) is the smallest integer such that P0[max R.j < r n(P*)] > P* and

PO(.) indicates the probability is computed assuming all populations are

identically distributed.

The procedure RR does not depend on the pairwise ranks alone. However,

the contribution from the "M* = max M." portion is small when n is large,
l<j<k J

and is included to insure that a nonempty subset is selected. The constants

rn (P*) can be obtained from Steel (1959) for P* = .95, .99, k = 3(1)10,

n = 4(1)20; from Miller (1966, Table VIII) for P* = .95, .99, k = 3(1)11,

n = 6(1)20(5)50, 100.

Hsu also investigates the Pitman efficiency of the RR procedure compared

to a means procedure (with common unknown variance) and shows it to be the

same as the Pitman efficiency of the Mann-Whitney test relative to the usual

t-test.

Letting ) D _) <. D i denote the n2 ordered values of D
j iLe tig (1 ) < (2 )  n. . ( 2 )  R

m = rn (P*)- n(n+l)/2, and D(.) k" I  D00, an alternative procedure was

also suggested by Hsu and is given by:

R : Select n, iff

min(D' ) - M) > 0 or max R - r (P*) (6.2)
km) j/i J n

The subset selected by Rj always contains the subset selected by RR; however,

the two rules are equi-efficient in terms of their Pitman efficiencies under

the location model.
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7. Selection Procedures Based on Vector Ranks.

In the preceding procedures R, R2, and R3, the statistics Hi are defined

using the ranks of the observations in the pooled sample. In cases with

equal sample sizes, vector-at-a-time sampling can be used effectively to

remove block effects, such as in a two-way layout, and to reduce data storage

requirements. These procedures cover, for example, models of the form

Xij = + 0i + 0. + Eij, i = 1,...,k, j 1,..., n, (7.1)

where o refers to a population effect, - to a block effect, and E to an error

term with any (not necessarily normal) continuous distribution.

Let (X1j,X2j .... Xkj) be the jth vector and Ri be the rank of Xij among

the k observations of the vector. Let Z(1) _ Z(2) -...< Z(k) denote an ordered

sample of size k from a continuous distribution G. Define a(r) as in Section 2, i.e.

a(r) = E[Z(r)IG], r 1,..., k,

and set n

J Z n  1 a(Ri ), i = 1,... ,k. (7.2)

McDonald (1972) investigated the classes of procedures Ri(h;G) and

R (q; G) which are defined using the two classes of functions {h(x) and

lg(x), where h and g are nondecreasing real-valued functions defined on

the interval I = [b(l),b(k)] and h satisfies the additional property that

h(x) x for all x t- I. The two classes of procedures are

R'(h;G): Select -i iff

h(Ji.)  Jrk , (7.3)
L J

and

R (g;G): Select ri iff

q(Ji) 0. (7.4)
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Particular members of these classes that are of special interest are

Ri(G) with h(x) = x+b, b > 0, and Rj(G) with g(x) = x-d, d real. Of course,

R (g;G) can select an empty set; however, the rule R2(G) will necessarily

choose a nonvoid subset if P* > .5 and n is large. The treatment of Ri(G)

and RY(G) parallels that of RI(G) and R2(G) described earlier. The infimum

of P(CS) over o is attained at a point in sk in the case of Ri(h;G). However

as in the case of RI(G), it is not generally true that the infimum is attained

at an equi-parameter configuration. But the statement is true in the case of

Rj(g;G).

When b(r) = r, nHi = Ti, the rank sum statistic associated with ni"

McDonald (1973) has discussed the related distribution of U = maxl<jk Tj-T l,

where the distributions Fi are identical. He has tabulated P(U _ b) for k = 2,

n = 2(1)20; k 3, n = 2(1)8; k = 4, n = 2(1)5; and k = 5, n = 2,3. For

P(U < b) = P* = 0.75, 0.90, 0.95, 0.975, and 0.99, he has tabulated the

asymptotic value of b for k = 2, n = 10(5)20; k = 3, n = 6(1)8; k = 4, n

3(1)5; and k = 5, n = 3.

The investigations of McDonald (1973) with respect to slippage configuration

based on simulations show that R and R (which are Ri(G) and R (G), respectively,

in the special case with b(r) = r) are roughly equivalent when the underlying

distribution has a long tail and the slippage is small, and that R is better

ntherwise. These rules have been used by McDonald (1979) in an analysis of stdt-

traffic fatality rates recorded by year.

Lorenzen and McDonald (1980) further investigate the probability of a

correct selection using rule Ri by Monte Carlo simulations covering a wide

range of distributions and parameter configurations (both location and

scale). In all cases investigated the LFC, i.e., the configuration minimizing

P(CS), appeared to be the equi-parameter configuration. This suggests that

the practical inference corresponding to the selection procedure need not be

restricted to the slippage configurations.

hi'
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In another paper, McDonald (1975) considered the case of three exponential

distributions with parameters (guaranteed lives) 0 = u < 02 =  = o with

samples of size two. For the rules R, R2, and R3 (using rank sum statistics

Ti) the infimum of P(CS) takes place when a1 =o2 
= a3. However, it is shown

that the expected subset size is not bounded above by kP*, a property enjoyed

by many parametric procedures [see Gupta (1965)] for the location parameter

case under monotone likelihood ratio conditions.

Within the context of a block design (2-way classification) Lee (1980)

considers another type of selection rule based on the statistics
n
n X Y.., i = 1,...,k, whereYi j~l 13. ..

1, if X = max XI, if Xij 1<0<k Xj

Y ij (7.5)

0, otherwise.

The selection rule is stated as

RMS: Select i. iff

Y max Y - d (7.6)
1 .jk j MS'

where dMS is the smallest nonnegative integer required to insure the probability

of a correct selection is no less than a prescribed P*. The procedure is a

multinomial selection rule (hence the subscript MS) designed to choose a

subset to contain the population having the highest probability of yielding

the largest observation. An analogous rule for choosing a subset to contain

the population having the highest probability of yielding the smallest

observation is also defined.
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The constants dMS required to implement the procedure RMS have been

determined by Lee (1980) using Monte Carlo simulation, assuming the underlying

distributions are identical, for k = 49 and n = 17. These values were then

used to select subsets of states on the basis of traffic fatality rates

recorded over a period of 17 years. Gupta and Nagel (1967) investigated

the least favorable configuration in a corresponding multinomial formulation

and concluded, based on some numerical case studies, that the identically

distributed case appears least favorable. Panchapakesan (1971) proved that

the identically distributed configuration is asymptotically least favorable.

8. Selection Procedures Based on Hodges-Lehmann Estimators

Let Xij (j = l,...,n; i = 1,2,..., k), k > 2, be independent random

observations from k populations with continuous cdf's F(x-ei), i = 1,2,...,k,

with common variance a2 = 1. The following problems have been considered by

Bechhofer (1954) under the normality assumption:

(i) Select a "good" population, the ith population being regarded as

good if ei > e[k]-A, for some preassigned A > O(i = 1,2,...k-l);

(ii) select the best t populations, i.e., the populations with location

parameters e[kt+l] .. e without regard to order;

(iii) select the best t populations with regard to order.

His approach, now known as the "indifference zone" approach selects the

"best" populations with a guaranteed minimum probability P* (preassigned) of

correct selection when (al,..sok) lies in a subset, say ' of the parameter

space. The region "* is called the preference zone and R k- 
' is the

indifference zone. Some of the procedures discussed earlier use rank

statistics for selection purposes.

-~I.
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However, when formulated for the problems discussed in this section, the slippage con-

figuration of parameters defined by the indifference zone is not necessarily the LFC.

The slippage configuration as pointed out by Puri and Puri (1969) is least

favorable when the parameters satisfy the relation 0[ - (] o(n- )
[i] Ii1=0

for all I < i, j < k, i j.

Ghosh (1973) has proposed alternate procedures, based on one-sample

Hodges-Lehmann estimators of 0.'s under the additional assumption that

F is symmetric about the origin. Ghosh's procedures give in all these cases

least favorable configurations for finite n without needing any restriction

on the parameters.

Gupta and Huang (1974) have proposed some procedures to select a subset

of the given k populations which is guaranteed to exclude all bad populations

with probability not less than some preassigned P*.

1 n
Let Rij =  + u(IXij-xi ) j = j 1,2,... ,n, i = 1,2,.. ,k, where

Z=1
u(t) = 1, , or 0 at t >, =, or < 0. Thus R. is the rank of XI among

!X ill. . .I'inl (I i < k; 1 j < n). Let i= (Xi ... X in) Consider

the one-sample signed rank statistics

n
h(Xi) = sgn(X. .)EJ(U nR), (8.1)

j!1 J( ij

i = 1,2,...,k, where sgn(t)= 1,0 or -1 according as t ', =, or < 0;

U n- Un2 Unn are the n ordered random variables from a rectangular

1 1+u(0,I) distribution, and J(u) (T--), where p(x) is the df of a random

variable satisfying i(x) + ,(-x) = 1 for all real x.

The one-sample H-L estimators are given by

i(Xi)+ 2 Xi) , (8.2)

"'lX "i2(
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i 1,2,... ,k, where = sup{a: h(Xi-aln) > 0, i2 (Xi) = infla:

h(X > 0}, 1' = (1 I) is an n-tuple with all elements 1.

All these statistics and estimators depend on n. The following

property of location invariance (see Hodges and Lehmann (1963)) is

satisfied by these estimators:

a i(Xi + c n) ei(X i) + c, (8.3)

i = 1,2,...,k, c being any constant. In the particular case when J(u) = u

or x I(u) (the inverse of a chi-distribution with one degree of freedom) the

statistics become the Wilcoxon signed-rank or normal-score statistics. In

the former case

X. .+X.
ai(X i )  med x Ij2 j , i z 1,2,...,k.
1 -, lj<j' <n 2

Let l<..< [k] denote the ordered estimators and let "(i)

be the unknown estimator associated with e[i] (1 < i k).

An Elimination Type Procedure to Select a Subset ExcludingAll "Strictly Non t

Best" Populations

Let d(ei.,o) be a suitable distance measure between 0i and cj; the

population 7r is "strictly non t best" if d(O[k-t+l],e i ) = [k-tl i

where A is a given positive constant. Let m denote the unknown number of

strictly non t best" populations in the given collection of k populations.

Clearly, we have 0 m < k-t. Let < {: O11] < [m] [kt+l] [m+

S[k-t+l] [k]

Then

k-t
= : J Zm

m=O
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Let CD stand for a correct decision, which is defined to be the selection

of a subset which excludes all the "strictly non t best" populations.

Gupta and Huang (1974) define the rule R as follows:

R: Reject iii iff

< [k-t+l] - A + dl (0 - d < A). (8.4)

The constant d1 is chosen to be the smallest number such that

inf P (CD[R) > P*.
OEQ

Gupta and Huang (1974) have shown that P.(CDJR) is a nonincreasing function

of O[i] (i =....m) and a nondecreasing function of o[i] (i = m+],....k).

Hence

inf P (CDIR) = inf inf P (CDIR).
2 - O<m<k-t eEQ m

It is known that if ei s are true values of the parameters, then under

some regularity assumptions An (ei(Xi)-o i) B(F)/A tends asymptotically
2I 1 1 2

(as n ) to Y. with N(0,1) where A2  f u)du, B(F) f J(2F(x)-)dF(x).

These statistics Yi's are mutually independent. This leads to a lower bound

on the infimum of the probability of a correct decision for large n as

follows:

inf P (CDIR) > r!(trl) f k-t(x+dn)4,r(x)[l(x)]t-r-l(x)dx, (8.5)

where r=min(t, k-t-l), d = 184 dI (or d,) for the Wilcoxon (or normal

score) case. For the case F(x) = ((x), then using normal scores the inequality

(8.5) is an equality and the result agrees with that obtained by Carroll,

Gupta and Huang (1976).

I.
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It has also been shown that

lim inf Pe(CDIR(n))
n--' Ei2 Q

= l m rt-' !t k-(x+  r - dl -1 r x) l.( )] -r p(x)dxL

1, since B d > 0

A 1

so that the sequence of rules {R(n)} is consistent wrt Q.

Since the cdf of each i(Xi) is stochastically nondecreasing in ei ,

it follows that for every 62 Q and 1 < i < j - k.

P {R(n) rejects w(i)l > Pe{R(n) rejects w(j)l,

and thus R(n) is a so-called monotone procedure.
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